AD-A149 761  THE EIGENSTRUCTURE ASSIGNMENT OF DEADBEAT CONTROL
SYSTEMS(U) COLUMBIA UNIV NEW YORK DEPT OF MECHANICAL
ENGINEERING G KLEIN DEC 84 AFOSR-TR-84-1268

UNCLASSIFIED AFOSR-82-8245 F/G 9/3




T T W W W —r
" S T N I T

~~~~~~~
...............

)bt - AoPAN~ cocs
PRSI . D

:‘. "N | O =122 f2s
=
3 Sl o
3 =" g

oy EN

MICROCOPY RESOLUTION TisT CHART
NATLNAL UKL RN e e

MR

v l.'".\'l’f'-'?‘




r_i~ "B d e S & e hee e arecien Jbae e MAN i e T 50 A it i e & Sk Sed BN A fuf [ QI ACAICA "L AN ShEL R S o A S SRR S v IV SRR S SO

UNCLASSIFIED

b SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

18 REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

1b. AESTRICTIVE MARKINGS

28 SEC_R!TY CLASSIFICATION AUTHORITY

3 OISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release; distribution

2o DECLASSIFICATION.DOWNGRADING SCHEDULE

unlimited.

N4 PERFCRMING ORGANIZATION REPORT NUMBERIS)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFOSR-TR- £4.1268

68 NAME OF PERFORMING ORGANIZATION
Columbia University

b. OFFICE SYMBOL
(1f appiicable

78. NAME OF MONITORING ORGANIZATION

Air Force Office of Scientific Research

c. ADDRESS (City. State ana ZIP Codt‘l )
v Dept of Mechanical Engineering

Box 20, Low Memorial Library
New York NY 10027

76

7b. ADDRESS (City, State and ZI!P Code '
Directorate of Mathematical & Information
Sciences, Bolling AFB DC 20332-6448

8s. NAME OF FUNDING/SPONSORING
ORGANIZATION

AFOSR

8o OFFICE SYMBOL
(1f applicadie

NM

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

j

AFOSR-82-0245

8c ADDRESS (City. State and ZIP Codes

Bolling AFB DC 20332-6448

10. SOURCE OF FUNDING NOS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO
61102F 2304 Al

1Y TITLE tinciude Security Classification:

THE EIGENSTRUCTURE ASSIGNMENT OF DEADBEAT CONTROL SYSTEMS

|

12. PERSONAL AUTHORIS)
George Klein

AD-A149

13a TYPE OF REPORT 13b. TIME COVERED

14. OATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT

Technical FROM To DEC 84 24
16. SUPPLEMENTARY NOTATION
COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB. GR.

characterized.

then calculated for this special case.

QTG FILE COPY

19. ABSTRACT /Continue on reverse if necessary and identify by block number;
All the available freedom in selecting the closed-loop Jordan block structure associated
with deadbeat controllers is described and the parameters associated with this freedom are
It is shown that in general one has freedom in selecting the Jordan block
structure as well as the eigenvectors of deadbeat controllers.
feedback matrix is a nonlinear function of the eigenvectors that are assigned it is shown
that for one important Jordan block structure the deadbeat controller feedback matrix is a
linear function of the parameters of the system.

Although in general the

The feedback matrix of minimum norm is

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

unceassifieo/unumitep & same as apt. T pric users O

2. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED e

22¢. NAME OF RESPONSIBLE INDIVIDUAL
Dr. Marc Q. Jacobs

220 TELEPHONE NUMBER
(Include Arec Code)

(202) 767- 4940

22c OFFICE SYMBOL

NM

DO FORM 1473, 83 APR

e ta =

EDITION OF 1 JAN 73 1S OBSOLETE.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

- . Lo Rl .
LIS (RSP WP Y - P, - b W, wl e

e
PO b,




fad

s ¥ F

:

T S o o frrvvv<“-\f‘~v-.,-_r r"v
Tl e . . e

A o aus e s
'

—~————T
' -

——

C i g

AR st Sad e . i S AR DA den etk st sed ol Sul Sl Al Rl Aai Sl Sl A AT AT AT INTATA TR TR T e e T

AFOSR-TR- 34-1268

The Eigenstructure Assignment of Deadbeat Control Systems *
by

George Klein

Dept. of Mechanical Engineering
Columbia University

New York, NY. 10027

1985 ACC !}Aﬂcos:ion For
FTIS GRA&I |
LTIC TARB
1 1-;:" ‘1‘0‘4 ffl f:]
(Not for IEEE Publication) STt tien
BN ,

| e e

PPN

).‘;"‘) _
v‘l 'Jl)" L
Sl [ .
.\.'t»" ‘~"
*This work has been supported by the U.S. Air Force under grant AFOSR-82-0245 _
: ’
AT e voo i .
P EARE . ~v._‘;“.“ ..
85 N1 ox -
'




P

PR s e S e P u i Pt St e It s "M RN SRt B S A o Sl Si ) < i A S +a i Ae T8 Snin bR SMA A A Wi “hie it

Abstract

All the available freedom in selecting the closed-loop Jordan block
structure associated with deadbeat controllers is described and the parameters
assoclated with this freedom are characterfized. It is shown that in general
one has freedom in selecting the Jordan block structure as well as the
eigenvectors of deadbeat controllers. Although in general the feedback matrix
is a nonlinear function of the eigenvectors that are assigned it is shown that
for one {important Jordan block structure the deadbeat controller feedback
matrix is a linear function of the parameters of the system. The feedback

matrix of minimum norm is then calculated for this special case.

- PPN N W S A o

T,

5

A e

. .
A a'a & A s La o4t a .

APy P

s’

'.,' .
hmtecatata.’

".
—hd ok Ak

O

——




s ‘v ]

LA LA

oy rYY YT PP S al N
AR TR I Bt}

i SRR A — AR

—— .—w,.
1 [N

ol

T.-‘I‘L el Sah St A P A Sl Sl A B 1 o & A V8 " of i g o lariudat B o AR S Bt A A Dl B A S AN el i A b A M I

1. Introduction

In this paper we will examine the problem of deadbeat control. This
problem involves the return to the origin of an arbitrary initial state X of
the linear discrete time system

X =Axn +B u (1)

n+1

in as few steps as possible. It has been shown in [1,2] that the solution is
achieved with linéar, time-invariant, state feedback and the resulting
closed-loop matrix is nilpotent. It was suggested in [1] that one possible
structure of the closed-loop system has m Jordan blocks of dimensions
{_)A.)._.qu”“}"the controllability indices, and all subsequent work in this
area has taken this to be an inviolable fact. It is shown here that when the
controllability indexes are not all 1identical there is consideraﬁly more
freedom in the selection of the closed-loop Jordan block structure for the
deadbeat control problem, beyond merely selecting the closed-loop
eigenvectors. The results of [5,6] are applied to the analysis of the
relationship between the feedback matrix that produces deadbeat control and
the possible closed-loop eigenvectors, 1In general there is a nonlinear
relationship between the feedback matrix and the parameters associated with
the assignable eigenvectors. However, it is shown that when the dimensions of
the Jordan blocks are selected to be the controllability indexes, the feedback
matrix is a linear function of the parameters describing the freedom in
selecting the closed-loop eigenvectors. Some applications are discussed and

an example is presented to illustrate the results,
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L. 2. Background and Notation » )
i = 4
: .
The notation will follow that of [3] and [4]. Specifically, for the R
linear map M, we denote the image of the subspace spanned by the columns of M i—j
as Im(M), the dimension of Im(M) by dim(Im(M)), the nullspace by ker(M) and ]
the Frobenius norm of M as ]
- 1
- 2 1/2 .
Il = 523 m ) » ‘
Ty
The space of polynomials with coefficients in the field R™ is denoted by
.
P"{ A | and the set of integers (1,2,..., k) by k »
The discrete time system is modelled by (1) with Ae«R ™™ B eR™" and i;
the pair (A,B) is assumed controllable. The controllability indexes will be ]
assumed to be ordered so that )
5 .
AT ANC S - |
The associated free generators for ker [A- A I,B] given by z { (A)e Pn*m[A]. ;;
are of degree ’4 i ! .
where
z, (A)=|s ; (A -
t, (A) L
n m .
s, (a)e P [2a] , fl(x)ep (A]
B
(] = -
and deg [s, (A )] =p, =1 L

All results will be given in terms of this set (arbitrary) of (z ,,i m]. If .
} [ 5
‘ [A-AT,Blz. a0 ’
K then it follows from the results of [1,2] that one solution to the deadbeat -

control problem satisfies

-3 ]
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FV=W (2)
. where V:[\/‘)---,Vm],W:[\*Jl,--')wm‘]
\/."'Ev.',,;"ﬁv.’,r.;]) W.'-'[w,',g)"')w‘-,)a(;] (3)

B-Ns. -
V:,,’-JT;;-;.A,) N0 w.J-_M"'/t.-(a)
: )y -t -
The closed-loop system (A+BF) then satisfies A AJ =0
ABEY v 4 57V 1, 51 > Vio®Y

One can "link"” these eigenvector chains together to form longer chains. For

le, if w. re replaced in (4) b w_ o+ W
example i were ) y i J’f"‘)*’
(A+BF) satisfies

(/4+BF) vV, = \3 y
1,1 ) J y

then " 4

.J

f.e. the eigenvector chains of length H.andﬂ have been "linked” to form a

chain of length P:.ff‘ » This corresponds to the construction of the .
polynomial $ :l
zm:zrju)w"z‘_m)
.Y
to generate a controllability subspace of dimension I.A;+r4 {7,lemma 2] The key . ‘
observation to note is that eigenvector chains can be “linked” by adding ' :
linear combinations of the columns of the W'-)[" . to the |
columns of W in (2). This idea will be developed furtl'\er. _L1
- 5
E 3. Discussion J
| 3.1 Eigenstructure Constraints of Deadbeat Control L3
The key observations to understanding deadbeat control are that the
closed-loop system matrix must be nilpotent and the longest closed-loop
' eigenvector chains must be of length at most . The first observation {s 4

. well known [1,2]). However, in ([1,2] and most subsequent work on deadbeat

’ control, it has been assumed that the eigenvector chains must have the lengths

s ~4- *
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as determined by the controllability indexes, the degrees of the z (A ). N
t
Now it is clear that the number of steps required to achieve a deadbeat

And

response is determined by the length of the longest eigenvector chain (or
chains) and none other. Thus there is in fact no reason to impose any special
structural constraints on the eigenvector chains other than the longest chain ;:

or chains be of length /ﬂ . From the discussions in [1,4] it follows that

A

this length constraint represents a min-max relationship; the smallest )
possible length of the longest eigenvector chain of a deadbeat controlled
system is given by fﬁ .

The other constraint that one need be concerned about is that the v

closed-loop set of generalized eigenvectors be linearly independent. This

, .
. oo
TER O STV .

merely involves using a linearly independent combination. of the columns of V
in ( 1) 3 ). In terms of the set L S;(A) Ifc/njf ,a linearly {iandependent |
combination of the coefficients must be used to determine the feedback matrix

F. This mathematical constraint is fairly simple to comply with.

In summary, a deadbeat controller must comply with two major constraints. '

PR Sy PR S PR

The feedback matrix must of course make the closed-loop system nilpotent but
it must also !

(1) assign generalized eigenvector chains of length at most '

can then be characterized by examining all possible eigenstructures and the

—
(2) assign a set of linearly independent generalized eigenvectors ;

Any cholce of eigenstructure that complies with these two requirements is ';

in fact acceptable for deadbeat control. The set of all deadbeat controllers . 4
1

class of all feedback matrices that assign them, using the results of (5,6,7].

One can thus select the lengths of the eigenvector chains as well as the
eigenvectors comprising the chains. We also note that the structural

information about the polynomial set lz_,;eﬁ_v_\} in [4,10] is useful 1in
L
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understanding the available freedon in selecting deadbeat controllers.

3.2 Parameterization of Deadbeat Controllers

The selection of a deadbeat controller involves both the choice of

eigenstructure or eigenvector chain lengths as well as a choice of the )
9
4
generalized eigenvectors themselves. Let us first examine the freedon T
associated with the selection of the eigenvectors for the simplest case where )
the lengths of the chains are the same as the controllability indexes. In ,‘
this case, it was shown in [8] that the set of all controllers that assigns
]
chains of these canonical lengths can almost always be described through ]
~” . -4
Sz mm - > ('l "‘,)fA- '
iyt ' B 1
parameters. An alternate proof of this result is included in the statement of ]
-4
the following results: .:
Proposition | ) :
Given [ Z,(A)) 1€m) | a set of free generators of Ker [A-AL, 3 ] then
1) any other set of free generators | 2,(A), ;e m ] can be uniquely :
written as ' 1
Z (a): L %, (AVZ (A) ]
’ peq Y ‘
where J }AJ F\'
x. e PLA]
J -

0"*3(“4.-3)& M;-)\AJ |

2) There are S free parameters associated with the coefficients of the

= e
. ALt e

% (A) that parameterize the choice for £ in [ 2)

3) The coefficlents of each of the S_(3\)can be assigned to the closed-loop ‘_J

system as an eigenvector chain with eigenvalue 0. The entire set of

eigenvector chains results in an eigenstructure that produces deadbeat ]
response.

Proof:




vy

1)

2)

3)

YR ArW e I AL G e st v N Ao A LRt R S A I Rt P i daget fien Surear. aan e dan et Sui SN St A P AL A S ey

This result is stated for completeness and is found in [4, Prop. 1].

This result {s based on the observation that if the length of the
eigenvector chains is given by the controllability indexes, then the
feedback matrix that assigns the coefficients of the 5: (A:) as

eigenvector chains is invariant for all ¥ i 4 Ef; is changed to
—_ - = k _
Z > Z +xR A Z
’ 4

where
= (i - Zz
R c‘cj - ) <4123 ( J )
This result is shown in the appendix. Thus, the total rnumber of

coefficients of the X, (A,) that will affect the feedback matrix is

+

given by o '

( f&;_fAJ ) = G*"*"";Jluk_ M

N '

M3

m
2
e 2

<1

[JEY

Pesd)

Cpam = 2RI

/-'.I

N

The first part of this result follows from [7, Prop. 1]. Since the
chains have lengths given by the controllability indexes, the closed-loop
system has a valid deadbeat control eigenstructure. [J

Note that the freedom in selecting the coefficients of the N; is directly
related to the freedom in selecting the generalized eigenvectors once the
chain lengths have been specified.

One is of course not restricted to eigenvector chains of lengths given by

the M Consider a general polynomial
i R it X
Z.ow:=L % ANz (A}, o« erLr]

N
where none of the coefficients of S (a) are zero. It was shown that the

et b "adie SIS il
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space spanned by the coefficients of /s\; {s in fact a controllability
subspace and one can select the dimension of this space or the degree of
according to the results of [4, Thm l]. These coefficlients can also be
assigned as a closed-loop eigenvector chain which thus spans a coatrollability
subspace. But, in the selection of deadbeat controllers, one need not assign
only eigenvector chains that span controllability subspaces. In general, for
deadbeat control!, one can assign eigenvector chains of virtually any length
from 1 to t‘i provided the two constraints described earlier are met. This is
summarized by the following result:

Proposition 2:

Given Z‘_ and Z ) M, )//A"Z/b:j the iengths of the eigenvector chains

J

that can be formed to be compatible with deadbeat control is given by

Ll ) (g pen), e CHy )/4,-)}
whe re = min (/\4' +/4J)I)
1 H; +/“J-P
Furthermore, all the chains except those of lengths (}& }/"J) can be formed

in two distinct configurations.

Proof:
Let A e _ ¢ k< _

2=z +xA ZJ P }AJ-R P 1y
Then, from the previous discussion the coefficients of gl form an eigenvector
chain of length k *}42. To be compatible with constraint 2 one must have a
total of r\#HJ generalized eigenvectors generated from the coefficients of
‘l‘. and s . Thus a complementary chain of length /A—k must be
assigned to the closed loop system using the first )A'_—k coefficients

of S () . The feedback matrix that asssigns these two chains satisfies

-8~
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/ T
F[\/_)\/]:[L\/_)W-i-;(— W, g—j(f,\_,hu)j :
) J ' J I},AL_+I / .
where € (f,) is a vector of appropriate length with zeros everywhere except f:
. L2
the £th element which is 1. 1
A .
The two distinct configurations result from the formation of either 2: , or
[
> -z +xafkz. .
bR J ' .1
These two configurations result from linking the chains in different orders. o]
The maximum chain length is a result of constraint 1. [J K
The two configurations in Prop. 2 are distinct 1in that each configuration has ‘ E
a parameter not referred to in Prop.l. These parameters are associated with
the selection of the chain lengths.
One can form eigenvector chains in a more general way than indicated in » 1
Prop. 2. Given d, the desired length of an eigenvector chain, one can form e
~ :
z = 2 %. (A)Z (A)  « e[ 2] (4) 5
‘ J,Aaﬁol J J :J K
and assign the related generalized eigenvectors. This can be done provided ‘ i
that none of the coefficients of 2: are 0 which is assured if for some subset
U of the controllability indexes one has [4] ;;J
: 3 T
ax{. . cAT ¢d < -
m P M } o MPEL »

1
B
<
L4
<
4
<
A

and constraint 2 1is met for the entire set of assigned generalized

eigenvectors. This latter requirement might necessitate assigning one or more

eigenvector chains of length less than/Amn. Therefore, the allowable lengths
of eigenvector chains compatible with deadbeat control are given by the

following result:

Proposition 3:

Given the controllability indexes ir fA - [ AL }

the allowable lengths of elgenvector chains compatible with deadbeat control
P are: Lhe, . ., Mm ’
: ! .
: ﬂmw )ﬁmvv+ ) ? MMH(PH ?Hm7+ﬂmw:)
. ) . n

Pz, o MR Lt R )

« etc, .
1
h
.
L_;_-.'___.;-;._A:;_.\.,_'._'._s. L;‘;‘;—‘l L. —— L) : ‘m b W PR ~ o, B e S A o T .
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Proof :

Follows directly from the previous discussion and [4, Thm, 1) or [3, Thm,
5.1]. O

Note especially that even the number of eigenvector chains can be adjusted
within a range. Because there are at most m polynomials that span
ker | A-AT N 3] the maximum number of chains is m. One can of course
always construct one eigenvector chain of length n provided the system is
controllable but for deadbeat control the smallest number of chains possible

is given by k+l where

n=R r«‘+J 3 ‘j < M

and k and j are integers

The total number of free parameters is a function of the number and
dimension of the Jordan blocks or eigenvector chains. A naive calculaton can
be performed given the chain lengths {‘A: ) e g_} to show that the number
of free parameters is

N- X0z (C/(,—/l,kﬂ))-;]
‘e R JZ/_(‘JEA'. ’ J

The term ( A;—fk + ) represents the total number of coefficients of
while the -1 takes into account the reduncancy associated with multiplying
each polynomial by a nonzero scale factor. This scale factor clearly has no
affect on the calculation of the feedback matrix. A discussion of the number
of redundant parameters will be deferred to a later date.
3.3 Minimum Norm Deadbeat Control

Consider now the problem of minimizing the Frobenius norm of the deadbeat
controller. The problem Is of course dependent on the Jordan block structure
that is selected. The feedback matrix that produces deadbeat control can be

determined from the following:

-10-
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Proposition 4: ‘-']
Let V, W and be defined as in section (2) and let J be defined as
Jl L_{ - O ‘ h
J = O N, )
‘ L ]
. . O - R
O - -~ 07 - 4
ldes .

with each J having l's on the first super diagonal and zeros everywhere else
A

and also

A (T )2 dm(T )z 2 den (T,)

Ao

}. If the dimensions of the Jordan blocks correspond to a set of dimensions ’ 1
- 1
) consistent with a deadbeat control eigenstructure then the feedback matrix i
b :
- that realizes the eigenstructure satisfies :
;t FVT W7+ W 77 - ’

. w;[u,),.,,wm] e
- \/J;-.[_u,u),..,olu“,““] C MR XM

X or 2 :

-1 3 - -1
t. F =WV '+ WTTT 'V »

where T is a nonsingular matrix whose entries are determined from the

coefficients of thex in ( 4 ).

!
¢ J 'g' ‘
rr Proof: -#

Straightforward but tedious algebra. It is important to note that T is

not an arbitrary matrix but has a specific structure. This can be seen when

the polynomial relationships are translated to the matrix form of ( S ).

Since T relates { Z’} to {_Z',} it must be invertible to ensure that the

generalized eigenvectors are linearly independent. []

-
R 4

The feedback matrix is in general a complex function of the coefficients

of the o . However, when the dimensions of the Jordan blocks are chosen TN
'J

q -11- »
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to be the controllability indexes the relationship simplifies and the minimum
norm solution can be found explicitly as shown by the féllowing.
Theorem 1
Assume that the dimensions of the Jordan blocks in ( 5 ) are given by the
controllability indexes. Then the feedback matrix is a linear function of the
parameters describing the freedom and can be written as

Fv=w*wT

where T is a matrix of parameters. The feedback matrix of minimum Frobenius

norm is achieved for +
t=-[u*®W ..., u:@\«/] fu
where:
t= vector formed from the columns of T

fo= vector formed from the columns of F

u*= conjugate transpose of the ith row of V—l

Proof:
The first part can be shown in a recursive manner by noting that for p ,

one always has

F V»M = \A//JM (6)

Fov rAJ >)Ann VL

<
<
+

<
~_’

then

a [
and by using ( 6 ) one has F V

d

F'{ Vit »7unn 77 ) i »%3 ' L«a*,m T \Afj .7r; :{}

VAR ;J 7: ;r
pd d I

g

|
ahh it
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I ’ v
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e
e e e
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1 where ij and ~q5 are the appropriate blocks from W and J in «( 5 ). "
[ A similar approach can be used to show the more general case.

The second part follows from the results of [7,Prop.3) [J

" 4, Example

¢

[ The system matrices from [11] were

-

(| .
L - A=]1 1 010 B= 10

¢ 0 0 100 000

» 0-1 000 100

' 0 0 Ot1o 001

[ 0 1 001 001 L
% The controllability indexes were found to be (3,1,1] and so the only possible o
{ chain lengths compatible with deadbeat control are [3,1,1}] or [3,2]. The

- matrix

4 -

h F=}|0 0 -1 1 -1

T
i
-
'
—-
I
—
o
I
_
L

o -1/3 0 -2/3 ~-1/3

2 .
HF” =6 2/3 °
F

is the minimum norm feedback matrix that assigns the eigenvector chain

lengths [3,1,1] But, the feedback matrix !_;
{ F= [ 0 0 -1 1 -1
L -1 -l1.5 0 o .5
! 0 -.25 =-.25-.75 ~-.25 !‘

2
l\F"F =5 1/4

assigns an eigenstructure of chain lengths [3,2] and has smaller norm.

T

5. Conclusions

The restrictions on the eigenstructure of systems with deadbeat response

' -13- *
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were described. These observations were then used to describe all the
allowable freedom one has in selecting the eigenstructure of such a system.
The freedom in selecting the eigenvectors was than described in terms

of the allowable eigenstructures. Finally, it was shown that the feedback
matrix that assigns the eigenstructure that has Jordan blocks of dimensions -~
given by the controllability indexes is a linear function of the avatlable

parameters. An explicit analytic expression was then derived for the feedback

matrix of minimum Frobenius norm that assigns this canonical eigenstructure. ‘
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Appendix

Lemma

Given ‘_Z{);c—,ml qnu( [Z_,l'cnl) ,-,(<J(Z'):/u‘_]

I

with

j J'.,AJL_,J\; ‘J
then the feedback matrix that assigns the coefficients of [ Sj ,;e-fﬂ ] as

:

closed-loop efgenvector chains remains {nvariant i€
Ei_ - Ef- +o( A k:Z
for
(Z
"(9‘3(29) sdes ,)
- (2)"46 (Z )
R o{eg ) g g

Furthermore, the feedback matrix that assigns the S satisfies

FV = wW+ W

where W is a matrix whose columns are linear combinations of A

Proof:

Consider the sequence of feedback matrices that assign the coefficients of the

~—

polynomioals in (Al) as the new polynomials Z are introduced to replace the

. First tder the set | J z
Z rst, consider the se [z'),..,Z Zm]

Z
' R kel 20

where

deq (Z )= deg(z )= p e K

The feedback matrix associfated with this set satisfies

W, ie Len,.,. om] (A2)

1

FV

W (A3)
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where the V and \o\/ are the coefficients of the S— and f . Let us

] ) !

assume that i' in (Al) can be written as

J

3
where (*) represents all the other terms not involving A Z  and R’:f( Mo
‘

J

Z‘:(x-)+o</)kz

The coefficient matrix V' can then be written as

V,:\/*+o<[0,...,0,\/g)o,,,,,o] (A4)

where the zeros represent the shift produced by /-‘k . Now a simlilar

relationship holds for W, with one important exception. If R < /4, ~)4

J

then W involves W and if Rzp- thenh/ does not involve W
! I Fopy then ™, (Y

One can now simplify (A3) by using the appropriate expression form (A2) and

(A4) to show that
FVv-Flv*eulo, ...,0,\g,0,'~0]}

:Fy*¥

- *

- FLw +o([0,"-'0,%',43,0,"'101] (A5)
The term involving \JJ;VJ is present only {f k'-).(‘—-ﬂd Therefore, 1f K

satisfies

k- deg(l.)~ 463 (z )
' J
then the feedback matrix is invariant for any value of o . It is important to

emphasize that this resulting expression (AS) does not involve either‘j or L\g .

This approach can of course be repeated to eliminate all the references to

[y,

-

!
in (A2). Note however that there can still be terms involving the (w

Jlﬂa,

gzkﬂ‘,,,m] in the equations that define F. Thus the V* and W* only involve

, 0 RH,,.,,M]

linear combinations of [V.)[J. 1€ 5] in (AS5). Now the set
[] y !
[V, ,ié. k] must incorporate a linearly independent combination of the
‘ —

[v‘ ','e R] 1f the entire set of eigenvectors is to span the whole space.
; S
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This meaans that the equations in (AS5) can be written as

F[VH,..7\/R]P®I:[u,,...juf‘(] Me L + X (6)
where X is a matrix involving the [.J , ;):k‘/’,,,,/pn], ®1nd1caces the
J/"J

Kroenicker matrix product and

: J‘é‘ iy )

v,
C/:Zz’.gug+7tkbloc_hd{>)(
T B 25

d -—
Since the [\G , gé 53) and [ \5 ) 3 ek ] nmust both be linearly
independent sets, the matrix ™  must be invertible and so (A6) can be
rewritten as

FIv, .., v 1-[v, ., Wl x(reI) (A7)

Now the process just described can be repeated on the set

(Z va z
Ul""?zz) Ly ) ) Tm
where

ole%(‘z;):/»(1<}4| I TR

Since none of the E involves the polynomials of degree ,A » the feedback
i '

matrix that assigns these cofficients as eigenvector chains can also satisfy

(A7). This process can be repeated for all the distinct }A- o Finally we

note that the equations relating to the polynomials of degree ,.LNL satisfy
I 3

since none of these can involve any WJ/. M .

? -

Vi )

As a final point, we emphasize that the assumption that the Z have
4

degrees given by the /A, is crucial. 1If a polynomial
'

E:Z + A Z (A8)
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!
is defined then the terms involving V’ in polynomials of degree less than M 4-/1 [
are no longer “redundant” and cannot be eliminated by the previously

described process, even if a polynomial of degree less than I«,'*/d is

J

of the form

Y
A

— 3
= ( ) - o A ya
Z A <9

with

A a4 4 *

- deq(Z) - deq (z2) :
R 9 ) 3*% »
This 1s due to the fact that the inclusion of (A8) eliminates the equation

FV, 2w,
4 1 ]
from (A2) and s no longer rcquired to define F [ »
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Promuluplying (19) by & + 1 block matnces of dimension (nh X nit),
sweeosstvely inorder wall result an (1O).

LA}
Y
I L,
’ i L, O - i’
In O ol | ('] Y pl
o v i
| Loy L, || X
.......................... X,
o Ly v (M) : Pa s
xtl, - IJ

(20)

The block matrx equation (20) is composed of (15) and (18). Therefore, a
solution of (15) and (18) 1s also a solution of (20).

From condition (5) it follows that if the degree of some rows of B,(s)
are less than M, - 1. then some rows in Zy, (16) must vanish identically.
This tmphies that the corresponding columns of L, . (N} may be
otmtted resulung in L and Z. Furthermore, denoting the matrix composed
of the independent rows of L by L and the matrix composed of the same
rows of P by P, (15) can be rewritten as

In v v (M) 2y, = Py o (V). @

From the uniqueness of { X (s), Yy(s)} it follows that the matnx
I, «, vt N) must be square and nonsingular.

In order 1o get the unuque solution { X(s), ¥,(s)}, we increase, at cach
stage. the degree of Y (s) by one. starting with deg ¥ =deg 4 -1, and
hus evamine the existence of a solution (using consistencey rank condi-
tom and continue this process until condition (17), with deg ¥y = N, -1,
~ satafied The solution { X(s5). ¥;(s)} is then obtained by solving (21)
for 7y, .ve, for Y(s). and finally ¥,(s) is given by (18).

IV. EXAMPLE

2 2
4(‘)‘[1"5"_\‘ s],. B(s)-[l*s s ]
5° 2

L 1+5,
1+2s+5? 5
()= - 3
5

s 1+
Erom i and (16), we get

, oo oo ) I 3 _| o s
: [.. ’ r [71 B [2 1] 3 [—3 2

9 3 0 1 2 1) 509

\ o 1 -2 | 1 10 -4
! -) = LK) 2 = .
-) o s 1 - @1y IJ

LS I I | 2 17 -1 12

From (1), we get

(ool Lot 1) e 0 2], . _f0 3
P‘"’o l]' P [1—]' Pr=1_y 1]‘ Py [1 1]'

The umgue solution obtained by solving (16) for X,(s) and (23) for Y,(s)
 piven by

ol - 31 _[s+as -3-2s
L) [ms: 3eas)s N [ 6 s l

NMTRE

X(s)
rank[ yl(‘)]-Z

tor all . therefore X,(5) and ¥ (s) arc nght comprime.

V. DISCUSSION AND CONCLUSIONS

An algorithm for solving a matrix polynomial cquation has been
presented  This algorithm, besides being sntuitively simple, has the im-
portant advantage of requining operations on constant matnces rather
than polynomial matrices

1t should be noted that this algorithm can be apphed, as well, to the
solution of

A NG()+ A:(s) Xo(5) + B(s)Y(5) = C(5)
by rewnting it 1n the form

Xi(s)

X:(x)] FAETEY =)

["’1(’)".‘(’)][

where C(s) is not nccessanly a square matnx, or to the solution of

B(5)Y(s5) =C(s).
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On the Relationship Between Controllability Indexes,
Eigenvector Assignment, and Deadbeat Control

GEORGE KLEIN

Abstract —-The subspaces, to which closed-loop generalized eigenvectors
are restricted, are described in terms of the controllability indexes of the
pair (A. B) and the polynomials of minimal degree that span ker( 4 -
Al B]. This characterization of the eigenspaces is then used to calculate
the deadbeat controller of minimum Frobenius norm.

INTRODUCTION

The freedom afforded by state fecdback heyond pole placement was
described in (3], (12] as that of assigning generalized cigenvectors (rom
specific subspaces. This characterization has been used (5], [15], [16] to
design state feedback controllers with desirable properties. In this note,
the available freedom in selecting cigenvector chains is examined and
clarified to facilitate the design of such controllers. An algebraic relation-
ship between the subspaces from which successive clements of eigenvector
chains must be selected is developed in terms of the controllability
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Decoupling by Restricted Static-State Foedback:
‘The General Case
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thatract - Inthos paper we tachte the zenerad block decosphns problom,
for hincar comstant dywanncal systems (04 By with e dnpe and
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existence for such baws which cencerslizes the one previousts goven i |2
for the simple case A - p o oo where & denotes the numbier of bloachs to 4
decontpled.
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Tntiadly, the adea of aestinc s e stote foedhe h v D0
Kamnvama and buruta [2) They have cnen aresuli aeanng v it
sunplost case ot decouphing v ol g o wiae A odenoie s the Lot
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s Sheoret s cense a3 sl Concrrntng the practtesd Foop o4 )
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avatlablie o lgn freedon {8 {n so lecting some ot the
Slosed=iop poles. wWhen there are more faputs thin
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trecdon {n o selectiay the cloasced-loop efaenstructare, Afamily of (ALY .., Vo aC ¥ [
f.e. oth ~losed=1oop poles and thelr ofgeanvectors, ' ! : .
i e Ao 3 svstem, s P . e P
f othe 4 ipled svsten \11 ﬂ(‘§‘ »‘,’ = ]Z.’ " i - .k
[ aud
. relininaries vo Uovoe tiamy idy
w syster (1) under consideraclinn, it is {
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